
NeuroNinjas: Elena Grajeles, Nova Meng, Pavan Raghupathy

University of Pennsylvania

April 28, 2024

Algorithm Summary

Our algorithm consists of five main steps: Data Loading, Preprocessing, Feature

Extraction, Modeling/Prediction, and Post-Processing. Initially, ECoG data from five participants

is loaded. This data then undergoes rigorous preprocessing, including bandpass and notch

filtering to eliminate unwanted frequencies and noise, ensuring the integrity of the data for

accurate model predictions. Next, the data is segmented using a moving window technique to

extract features such as average voltage, signal energy, and Shannon entropy from both the

time-domain and frequency-domain. An R feature matrix that encapsulates temporal features

from multiple windows, is then fed into XGBoost models for predicting finger movements.

Finally, the model outputs are refined through cubic spline interpolation and low-pass filtering to

produce smooth and realistic predictions of finger movements.

Algorithm Details

In the final algorithm, the procedure begins with the loading of electrocorticography

(ECoG) data from a MATLAB file, which contains neural recordings from three different

participants. Each participant’s ECoG data is separately loaded into distinct variables for isolated

processing. Following data acquisition, the algorithm proceeds to load three pre-trained

XGBoost regression models from pickle files. These models are specifically trained to predict

finger movements from the ECoG signals, with each model corresponding to one of the three

participants.

The preprocessing stage involves multiple steps to refine the signal for further analysis.

Initially, a bandpass filter is applied to retain frequencies between 2 Hz and 160 Hz, which is

critical to capture the brain’s electrical activity while removing noise. Additionally, several notch

filters eliminate specific frequencies known to represent noise, including the standard 50 Hz

power line interference and other sporadic spike frequencies identified in the data.

After the filtering process has been completed, the algorithm segments the ECoG data

using a moving window technique, where each window undergoes feature extraction. This step

computes various signal characteristics such as average voltage, signal energy, and Shannon

entropy, as well as frequency-domain features within defined bands.

Next, using the function MovingWinFeats, features from each data segment are

compiled. A composite feature matrix (R Matrix) integrated these features across multiple

windows, enabling the algorithm to capture temporal dependencies essential for dynamic

predictions. During the algorithm testing phase, the feature matrices are input into their

corresponding XGBoost models to generate predictions for finger movements. To ensure

continuity in the predictions, cubic spline interpolation is employed, followed by a low-pass

filter to smooth the prediction trajectories. Finally, the algorithm structures the predictions for

each participant into a comprehensive output matrix. The process of the algorithm is visualized

below in Figure 1.

Fig. 1: Algorithm Flowchart

Figure 2 highlights the motivation behind the post-processing steps we employed on the

calculated finger movement prediction. We experimented with varying low-pass filters on

interpolated predictions from an XGBoost model, aimed at smoothing the predictions of finger

movements. This step is crucial as it helps eliminate high-frequency noise that might distort the

realism of the predictions. By plotting these two datasets, we can visually assess how the

low-pass filtering enhances the alignment of the predicted movements with the actual

movements. The correlation metrics computed in this process quantify the improvement,

providing a direct link between the filtering technique and the increased prediction accuracy.

This visualization was pivotal in motivating the choice of a 0.5 Hz cutoff for our

low-pass filter in the post-processing phase. It clearly illustrates the benefits of filtering, showing

a significant reduction in noise and an increase in the smoothness of the output, which more

closely mimics physiological finger movements. Thus, this figure not only supports our

post-processing decisions but also highlights the practical impact of these choices on the model’s

performance.

Fig 2: Example of Filtered Predictions vs Test Data (Patient 1, Finger 1)

Other Attempted Methods:

Throughout the development of our final algorithm, we evaluated several regression

techniques. One approach that initially seemed promising was the use of the AdaBoostRegressor,

an ensemble method that combines multiple weak models (XGBoost regressors, in this case) into

a robust predictor. We found the training process proved excessively time-consuming, ultimately

deemed inefficient for our needs. This inefficiency was a significant drawback since it hindered

rapid iteration and testing, which are crucial in a research and development setting.

Furthermore, we experimented with Gradient Boosting Regression. Despite its reputation

for high performance in regression tasks, the results were underwhelming, with an average

correlation across multiple trials only around 0.36. This modest performance highlighted the

challenges of tuning gradient boosting models for highly specific biomedical data, where the

signal complexity and noise can substantially affect performance.

We also explored Neural Network Regression using an MLPRegressor, aiming to

leverage deep learning's capability for handling non-linear relationships and complex patterns.

Despite working extensively on tuning the configuration of the network architecture and learning

parameters, the results were largely disappointing. The correlations were generally low, with an

average correlation peaking at just under 0.10. We believe the neural network's performance

might have been hampered by the need for extensive data scaling, reflecting the practical

challenges of applying deep learning to smaller datasets.

These experiences underscored the necessity of selecting and configuring regression

models that are not only theoretically capable but also practically efficient and well-suited to the

specific characteristics of the data being analyzed.

Fourth Finger Correlation:

The anatomy of the muscles and nerves in the hand explains why the flexion of the ring

finger often correlates strongly with the movements of the middle and little fingers. Specifically,

the ring and middle fingers cannot move as independently as the others because they share a

common extensor muscle, the extensor digitorum. This shared muscle structure naturally leads to

synchronized movements between these two fingers, resulting in highly correlated flexion

patterns. Furthermore, the neural structure of the hand contributes to this phenomenon. The ulnar

nerve, which services the little finger, the ring finger, and one half of the middle finger, splits

into branches that extend to each of these fingers. The interconnected nature of these nerve

branches means that signals intended for one finger can influence movement in the others,

enhancing the likelihood of correlated motion between them.

Conclusion:

We were happy with the performance of our algorithm overall. We were able to pass both

checkpoints with relatively good scores on the leaderboard data (correlation = 0.4853). However,

there were several areas that we felt could have been improved upon in our algorithm. Primarily,

we felt that we could have done more to experiment with different types of modeling. We ended

up just using the xGB method after experimenting with different constants, but we felt that,

given additional time, there could have been more of an opportunity for us to try combining

several different machine learning methods together and testing the performance of this

combined algorithm. Additionally, there may have been different options in the areas of

pre-processing, post-processing, and feature extraction. While we did conduct thorough research

in these areas, there was definitely room for improvement in our execution of these methods. In

the future, we hope to prepare a plan that combines several different types of algorithms and

novel methods for similar projects in order to deliver better results.

References:

Korik, A., et al. “3D hand motion trajectory prediction from EEG MU and beta

Bandpower.” Progress in Brain Research (2016), pp. 71–105

Merk, Timon, et al. "Machine learning based brain signal decoding for intelligent adaptive deep

hello i brain stimulation." Experimental Neurology 351 (2022): 113993.

Xie, Ziqian, Odelia Schwartz, and Abhishek Prasad. "Decoding of finger trajectory from ECoG

hello i using deep learning." Journal of neural engineering 15.3 (2018): 036009.

Yao, Lin, and Mahsa Shoaran. "Enhanced classification of individual finger movements with

hello i ECoG." 2019 53rd Asilomar Conference on Signals, Systems, and Computers. IEEE,

hello i 2019.

Appendix:

#load data

all_data = loadmat('truetest_data.mat')

leader1_ecog = all_data['truetest_data'][0][0]

leader2_ecog = all_data['truetest_data'][1][0]

leader3_ecog = all_data['truetest_data'][2][0]

load models

with open('xgb_regressors1.pkl', 'rb') as f:

xgb_regressors = pickle.load(f)

with open('xgb_regressors2.pkl', 'rb') as f:

xgb_regressors2 = pickle.load(f)

with open('xgb_regressors3.pkl', 'rb') as f:

xgb_regressors3 = pickle.load(f)

hardcode shape of the data

shape_n = np.shape(leader1_ecog)[0]

from scipy.signal import filtfilt, iirnotch

def firwin_me(lowcut, highcut, fs, order=5):

nyquist = 0.5 * fs

low = lowcut / nyquist

high = highcut / nyquist

b = firwin(order, [low, high], pass_zero=False)

return b

def filter_data(raw_eeg, fs=1000):

lowcut = 2 # Lower cutoff frequency

highcut = 160 # Higher cutoff frequency

order = 5 # Filter order

Apply bandpass filter

b = firwin_me(lowcut, highcut, fs, order=order)

filtered_data = filtfilt(b, [1.0], raw_eeg, axis=0) # Ensure filtering

across time

Notch filter to remove 50 Hz power line noise

notch_freq = 50 # Frequency to remove (Hz)

quality = 50

b_notch, a_notch = iirnotch(notch_freq, quality, fs)

filtered_data = filtfilt(b_notch, a_notch, filtered_data, axis=0)

Notch filter to remove spike frequencies

spike_frequencies = [110.076, 0.02095, 74.1995, 38.51574774775,

101.9315, 79.65909302326] # Spike frequencies in Hz

for freq in spike_frequencies:

b_notch, a_notch = iirnotch(freq, quality, fs)

filtered_data = filtfilt(b_notch, a_notch, filtered_data, axis=0)

return filtered_data

def NumWins(x_len, fs, winLen, winDisp):

Calculate how long winLen and winDisp are in samples

winDispSamples = int(fs * winDisp)

winLenSamples = int(fs * winLen)

Calculate how many windows there will be with overlap

numWinsWithOverlap = 1 + (x_len - winLenSamples) // winDispSamples

return numWinsWithOverlap

def avg_t_voltage(signal):

avg_voltage = np.mean(signal)

return avg_voltage

def signal_energy(signal):

energy = np.sum(np.square(signal))

return energy

def shannon_entropy(signal, fs=1000):

Calculate the PSD using the Welch method

frequencies, psd = welch(signal, fs=fs)

Calculate the probability mass function for the signal

prob_mass_func = psd / np.sum(psd)

Calculate Shannon entropy

entropy = -np.sum(prob_mass_func * np.log2(prob_mass_func))

return entropy

def avg_f_bandpower_and_entropy(signal, fs=1000):

Define frequency bands of interest

bands = [(8, 12), (12, 30), (75, 115), (115, 150)]

Initialize arrays to store band power and entropy

avg_bandpower = np.zeros(len(bands))

band_entropy = np.zeros(len(bands))

Calculate the PSD using the Welch method

frequencies, psd = welch(signal, fs=fs)

Iterate over each frequency band

for i, (f_min, f_max) in enumerate(bands):

Find indices corresponding to the frequency range

ind_min = np.where(frequencies >= f_min)[0][0]

ind_max = np.where(frequencies >= f_max)[0][0]

Calculate and store average power in this band

avg_bandpower[i] = np.mean(psd[ind_min:ind_max])

Calculate Shannon entropy in this band

band_signal = signal[ind_min:ind_max]

band_entropy[i] = shannon_entropy(band_signal, fs)

return avg_bandpower, band_entropy

def MovingWinFeats(x, fs, winLen, winDisp, featFn):

Determine number of windows for input x

num_windows = NumWins(len(x), fs, winLen, winDisp)

Initialize empty array to contain feature data

features = []

For all windows...

for ich in range(num_windows):

Extract windowed segment

window_start = int(ich * winDisp * fs)

window_end = window_start + int(winLen * fs)

window_segment = x[window_start:window_end]

Calculate feature for this windowed segment and append to

features list

features.append(featFn(window_segment))

Convert features list to numpy array

features_final = np.array(features)

Return determined features

return features_final

def get_features(filtered_window, fs=1000, num_features = 10):

"""

Calculate features for a given filtered window.

Args:

filtered_window (window_samples x channels): The window of the

filtered ecog signal.

fs (int): Sampling rate.

Returns:

features (channels x num_features): The features calculated on each

channel for the window.

"""

Determine number of channels in data

num_channels = filtered_window.shape[1]

Initialize empty array to contain feature data

features = np.zeros((num_channels, num_features))

For each channel...

for ich in range(num_channels):

Get current window

window = filtered_window[:, ich]

Determine & store average time domain voltage

avg_voltage = avg_t_voltage(window)

features[ich, 0] = avg_voltage

energy = signal_energy(window)

features[ich, 1] = energy

cfc_value = compute_cfc(window, (8, 12), (70, 120), fs)

features[ich, 3] = cfc_value

Determine & store average frequency domain bandpowers

avg_bandpowers, band_entropy = avg_f_bandpower_and_entropy(window,

fs)

features[ich, 2:6] = avg_bandpowers

features[ich, 6:10] = band_entropy

Return array of features

return features

def get_windowed_feats(raw_ecog, fs, window_length, window_overlap,

num_features):

"""

Process filtered ECoG data through the steps of filtering and feature

calculation and return features.

Inputs:

filtered_ecog (samples x channels): the filtered ECoG signal

fs: the sampling rate (e.g., 1000 for this dataset)

window_length: the window's length in seconds

window_overlap: the window's overlap in seconds

numFeat: the number of features calculated for each channel

Output:

all_feats (num_windows x (channels x features)): the features for

each channel for each time window

note that this is a 2D array.

"""

Determine number of channels

filtered_ecog = filter_data(raw_ecog)

num_channels = filtered_ecog.shape[1]

Determine the number of windows

num_windows = NumWins(len(filtered_ecog), fs, window_length,

window_overlap)

Determine the features for each channel for each time window

unformatted_features = MovingWinFeats(filtered_ecog, fs, window_length,

window_overlap, get_features)

Initialize an empty array to contain feature data

features = np.zeros((num_windows, num_channels * num_features))

Reformat determined features to correct shape

for ich in range(num_channels):

features[:, ich * num_features: (ich + 1) * num_features] =

unformatted_features[:, ich, :]

Return determined features

return features

define funtion to create R matrix

def create_R_matrix(features, N_wind):

"""

Write a function to calculate the R matrix

Input:

features (samples (number of windows in the signal) x channels x

features):

the features you calculated using get_windowed_feats

N_wind: number of windows to use in the R matrix

Output:

R (samples x (N_wind*channels*features))

"""

determine number of windows

num_windows = features.shape[0]

add first N_wind-1 rows to start of features matrix

adding_rows = features[0:N_wind-1,:]

features_modified = np.concatenate((adding_rows,features),axis=0)

initialize empty matrix to contain R

R = np.zeros((num_windows,features.shape[1]*N_wind+1))

populate first column with value=1

R[:,0] = 1

for each time window...

for ich in range(num_windows):

get start and end indices for the window

window_start = ich

window_end = ich + N_wind

for every feature...

for jch in range(features.shape[1]):

preced_feat = features_modified[window_start:window_end,jch]

save features to R matrix

R[ich,jch*N_wind+1:jch*N_wind+N_wind+1] = np.transpose(preced_feat)

return determined matrix containing R

return R

def downsample_flexion_data(data_glove, num_windows):

num_samples_per_window = len(data_glove) // num_windows

downsampled =

np.array([np.mean(data_glove[i*num_samples_per_window:(i+1)*num_samples_pe

r_window], axis=0)

for i in range(num_windows)])

return downsampled

Define window params

fs = 1000

win_len = .9

overlap = .1

num_feat = 10

N_wind = 3

Create feature matrices for each patient

fs1_test_final =

get_windowed_feats(leader1_ecog,fs,win_len,overlap,num_feat)

RT1_final = create_R_matrix(fs1_test_final, N_wind)

fs2_test_final = get_windowed_feats(leader2_ecog,fs,win_len,

overlap,num_feat)

RT2_final = create_R_matrix(fs2_test_final, N_wind)

fs3_test_final = get_windowed_feats(leader3_ecog,fs,win_len,

overlap,num_feat)

RT3_final = create_R_matrix(fs3_test_final, N_wind)

Define the low-pass filter parameters

def butter_lowpass(cutoff, fs, order=5):

nyquist = 0.5 * fs

normal_cutoff = cutoff / nyquist

b, a = butter(order, normal_cutoff, btype='low', analog=False)

return b, a

def lowpass_filter(data, cutoff, fs, order=5):

b, a = butter_lowpass(cutoff, fs, order=order)

filtered_data = filtfilt(b, a, data)

return filtered_data

highcut_frequency = .5

p1_XGB = np.zeros((shape_n, 5))

for finger_index, xgb_regressor in enumerate(xgb_regressors):

predictions = xgb_regressor.predict(RT1_final)

original_time_points = np.linspace(0, len(predictions) / 1000,

len(predictions))

interpolation_function = CubicSpline(original_time_points, predictions)

interpolated_predictions =

lowpass_filter(interpolation_function(np.linspace(0, len(predictions) /

1000, shape_n)),highcut_frequency,fs)

p1_XGB[:, finger_index] = interpolated_predictions

p2_XGB = np.zeros((shape_n, 5))

for finger_index, xgb_regressor in enumerate(xgb_regressors2):

predictions = xgb_regressor.predict(RT2_final)

original_time_points = np.linspace(0, len(predictions) / 1000,

len(predictions))

interpolation_function = CubicSpline(original_time_points, predictions)

interpolated_predictions =

lowpass_filter(interpolation_function(np.linspace(0, len(predictions) /

1000, shape_n)),highcut_frequency,fs)

p2_XGB[:, finger_index] = interpolated_predictions

p3_XGB = np.zeros((shape_n, 5))

for finger_index, xgb_regressor in enumerate(xgb_regressors3):

predictions = xgb_regressor.predict(RT3_final)

original_time_points = np.linspace(0, len(predictions) / 1000,

len(predictions))

interpolation_function = CubicSpline(original_time_points, predictions)

interpolated_predictions =

lowpass_filter(interpolation_function(np.linspace(0, len(predictions) /

1000, shape_n)),highcut_frequency,fs)

p3_XGB[:, finger_index] = interpolated_predictions

pred_XGB = np.zeros((3,1), dtype=object)

pred_XGB[0,0] = p1_XGB

pred_XGB[1,0] = p2_XGB

pred_XGB[2,0] = p3_XGB

savemat('predictions.mat', {'predicted_dg':pred_XGB})

